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Global teleconnections of climate to terrestrial carbon flux
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[11 We have applied association analysis to 17 years of climate index observations and
predicted net ecosystem production on land to infer short-term (monthly to yearly)
teleconnections between atmosphere-ocean climate forcing and terrestrial carbon cycles.
The analysis suggests that on a global level, climate indices can be significantly correlated
to net ecosystem carbon fluxes over more than 58% of the nondesert/ice-covered land
surface, commonly with a lead period of 2—6 months. The Southern Oscillation (SO) and
Arctic Oscillation (AO) indices explain nearly equal portions of these significantly
correlated area carbon fluxes. These significant teleconnections detected between surface
climate and seasonal carbon gain or loss in terrestrial vegetation offer important
capabilities for making inferences about the variability in the terrestrial carbon cycle of
natural and agricultural ecosystems worldwide.  INDEX TERMS: 0315 Atmospheric Composition
and Structure: Biosphere/atmosphere interactions; 0322 Atmospheric Composition and Structure: Constituent

sources and sinks; 1615 Global Change: Biogeochemical processes (4805); 1620 Global Change: Climate
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1. Introduction

[2] Net photosynthetic accumulation of carbon by plants,
also known as net primary production (NPP), provides the
energy that drives most biotic processes on Earth. NPP
produces organic matter that is consumed by microbes and
animals. Sustained NPP can contribute to unique biological
properties of Earth’s terrestrial surface, such as the diversity
of organisms supported by any given ecoclimatic zone.
Moreover, climate controls on NPP fluxes are an issue of
central relevance to human society, mainly because of
concerns about the extent to which NPP in managed
ecosystems can provide adequate food and fiber for a
growing population. Predictability in the NPP fluxes of
agricultural zones is a principal foundation for sustainable
development. In addition, accounting for the potential of
long-term entrapment of atmospheric CO, derived from
fossil fuel pollution sources back in terrestrial ecosystems
begins with an understanding of interannual to decadal
climate controls on NPP and net ecosystem production
(NEP) fluxes, which can further account for terrestrial
carbon sinks [Schimel et al., 2001].
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[3] As a major biological flux of carbon, predicted NPP
for a large land area is a unique integrator of climatic,
ecological, geochemical and human influences on the global
carbon cycle. In the absence of major human disturbance,
surface temperature, precipitation, and solar irradiance have
been shown as the strongest controllers of yearly terrestrial
NPP at the global scale [Lieth, 1975; Mellilo et al., 1993;
Potter et al., 1993]. Reliable estimates of seasonal NPP and
NEP fluxes depend on timely and accurate forecasts of these
climate forcing variables over land.

[4] The influence of ocean surface patterns, such as those
associated with the El Niflo-Southern Oscillation (ENSO),
have been noted as significant global teleconnections for
atmospheric circulation and land surface climate [Glantz et
al., 1991]. Teleconnection is a term used in meteorological
studies to describe simultaneous variation in climate and
related processes over widely separated points on earth.
There are different phases in climate patterns such as the
ENSO, which is called El Nifio in the warm phase and La
Nifia in the cold phase. ENSO warming at the sea surface,
which is driven by changes in winds and ocean-atmosphere
heat exchange, typically extends to about 30°N and 30°S
latitude, with lags into continental land areas of several
months. Certain elements of climate variability at relatively
high latitudes may be predictable from forcings by sea
surface temperature (SST) and sea level pressure (SLP) in
the tropical ocean [Ting et al., 1996; Hoerling et al., 2001].
For example, in the extratropics of the Northern Hemi-
sphere, the deep Aleutian low that accompanies El Nifio can
advect warm moist air along the west coast of North
America bringing warm spells to western Canada and
Alaska [Trenberth and Hurrell, 1994]. On the timescale of
several decades, increases in the frequency of the warm
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phase of ENSO can account for 0.06°C of global warming
from 1950—1998 [Trenberth et al., 2002].

[s] Previous studies have identified global connections of
interannual SST to land surface processes [Keeling et al.,
1995; Myneni et al., 1998; Dai et al., 1998; Los et al.,
2001]. These analyses have mainly focused on a single
climate index, although Los et al. [2001] reported that
effects of ENSO on land climate are sometimes magnified
and at other times almost completely negated by the North
Atlantic Oscillation (NAO). At a strictly regional scale,
ENSO events have been linked to weather anomalies and
crop production in the continental United States [Carlson et
al., 1996; Nemani et al., 2001], and streamflow patterns in
the Pacific northwest [Hamlet and Lettenmeier, 1999].
Several previous studies have documented the influence
ENSO events on model predictions of NPP and annual
carbon balance of Amazon forest ecosystems [Prentice and
Lloyd,1998; Tian et al., 1998; Potter et al., 2001a, 2001b;
Foley et al., 2002]. However, large-scale teleconnections
between multiple climate indices and global carbon fluxes
have yet to be demonstrated, and may escape ready detec-
tion without the aid of spatial-temporal analysis tools
designed specifically to uncover such associations, both
weak and strong, between time series of SST/SLP anoma-
lies and spatially explicit estimates of carbon fluxes on the
land.

[6] We report here on approaches to identify and quantify
global teleconnections of climate indices and terrestrial
carbon flux represented by monthly NPP and NEP predicted
by an ecosystem model over the period 1982—1998. The
sparse coverages of observed NEP and NPP in space and
time dictate using a predictive model for this analysis. The
principal science question we address is “Can multiple
climate index observations be used as reliable predictors of
carbon flux patterns (NEP interannual variability and ex-
treme events) over large areas of the global land surface?”
To interpret these results, it is also necessary to incorporate
information on when and where anomalies in NPP and NEP
controllers (land surface temperature and precipitation) are
linked to similar patterns in the climate indices.

2. Global Data and Models

[7] Several climate indices are of prime interest in this
study of ocean-atmosphere-land teleconnections [7renberth
and Hurrell, 1994]. We focus here primarily on the
Southern Oscillation Index (SOI) and the Arctic Oscillation
(AO) index, and secondarily on two NINO indices. Corre-
lations between these climate index anomalies and monthly
gridded SST [Bottomley et al., 1990; Reynolds et al., 2002]
for period of 1982—1998 indicate the central areas of the
ocean temperature record that can be most closely associ-
ated with each the indices (Figure 1). SOI is an indicator of
atmospheric impacts of ENSO, computed as the standard-
ized difference between SLP measured in Tahiti (17°S,
149°W) and Darwin, Australia (13°S, 131°E). The AO is
derived from 1000 mb height anomalies poleward of 20°N
[Thompson and Wallace, 1998]. The NINO1 + 2 index is
used to monitor SST over the eastern tropical Pacific,
delineated by the area between 0°-10°S and 90°W-—
80°W. The NINO4 index is used to monitor SST over the
area between 5°N-5°S and 160°E—150°W.
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[8] The SOI and NINO indices are commonly used to
document warm-phases in ENSO, which are often associated
with above-average temperatures in the northwestern half
of the North American continent, and below-average tem-
peratures in the southeastern half [Trenberth and Hurrell,
1994; Klein et al., 1999; McCabe and Dettinger, 1999].
There is also a pattern of the warm-phase ENSO associated
with above-average precipitation over western coastal South
America [Vuille et al., 2000], the southern United States, and
northern Mexico, plus below-average precipitation in south-
central Africa, northeastern South America, parts of southern
Asia and Australia, and in North America from the Canadian
Rockies to the Great Lakes region.

[9] The AO is closely related to the North Atlantic
Oscillation (NAO, measured between the Icelandic low
(65°N, 22°W) and the Azores high pressure centers from
39°N, 9°W to 36°N, 6°W [Walker and Bliss, 1932]), which,
in its “high index” warm phase can represent the persis-
tence of above-average temperatures over North America
and Europe, and below-average temperatures variations
over North Africa and the Middle East. During winters
when the AO index is high, anomalously low precipitation
commonly occurs over the Canadian Arctic, central and
southern Europe, the Mediterranean and Middle East. In
contrast, anomalously high precipitation occurs from
Iceland though Scandinavia [Hurrell, 1995].

[10] For this analysis with climate index teleconnections,
terrestrial NPP and NEP fluxes have been computed
monthly (over the period 1982—-1998) at a spatial resolu-
tion of 0.5° latitude/longitude using the NASA-CASA
(Carnegie-Ames-Stanford) Biosphere model [Potter, 1999;
Potter et al., 1999]. NASA-CASA is a numerical model of
monthly fluxes of water, carbon, and nitrogen in terrestrial
ecosystems. Our estimates of terrestrial NPP fluxes depend
on inputs of global satellite observations for land surface
properties and on gridded model drivers from interpolated
weather station records [New et al., 2000] distributed across
all the continental masses. Consequently, the NASA-CASA
predictions of terrestrial NPP carbon fluxes are derived
with no dependence whatsoever on climate index data, nor
on atmospheric circulation model predictions of surface
climate patterns.

[11] Our fundamental approach to estimating terrestrial
NPP is to define optimal metabolic rates for carbon fixation
processes, and to adjust these rate values using factors
related to limiting effects of time-varying inputs of solar
radiation, air temperature (TEMP), precipitation (PREC)
[New et al., 2000], all from ground-based weather station
data sources, plus predicted soil moisture, and land cover
[DeFries and Townshend, 1994]. Carbon (CO,) fixed by
vegetation as NPP is estimated in the ecosystem model
according to the time-varying (monthly mean) fraction of
photosynthetically active radiation (FPAR) intercepted by
plant canopies and a light utilization efficiency term (emax).
FPAR is the only time-varying satellite sensor data used to
drive the model.

[12] The FPAR-emax product is modified by gridded
stress factors computed in the model for temperature (7a)
and moisture (W) to vary from month-to-month. The emax
term is set uniformly at 0.39 g C (MI~' PAR) [Potter et al.,
1993], a value that has been verified globally by comparing
predicted annual NPP to more than 1900 field estimates of
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Areas of SST represented by correlation values of » > 0.4 (Pearson’s coefficient) in

association with the SOI, AO, NINO1 + 2, and NINO4 indices for the period 1982—1998. All time series
monthly anomalies have been Z score transformed prior to cross correlation. Each nonwhite pixel
indicates a pixel location where the SST record shows a significant correlation with at least one of the
climate indices, and the color of that pixel indicates which of the indices has the highest correlation. Over
65% of global nonice sea coverage is represented by the four-color coverage.

NPP (Figure 2). Interannual NPP fluxes from the CASA
model have been reported [Behrenfeld et al., 2001] and
checked for accuracy by comparison to multiyear estimates
of NPP from field stations and tree rings [Malmstrom et al.,
1997]. Our NASA-CASA model has been validated against
field-based measurements of NEP fluxes and carbon pool
sizes at multiple boreal forest sites in North America [Potter
et al., 2001¢c; Amthor et al., 2001] and against atmospheric
inverse model estimates of global NEP [Potter et al., 2003].

[13] Our NASA-CASA model is designed to couple
seasonal patterns of NPP to soil heterotropic respiration
(Ry) of CO, from soils worldwide [Potter, 1999]. First-
order decay equations simulate exchanges of decomposing
plant residue (metabolic and structural fractions) at the soil
surface. The model also simulates surface soil organic
matter (SOM) fractions that presumably vary in age and
chemical composition. Turnover of active (microbial bio-
mass and labile substrates), slow (chemically protected),
and passive (physically protected) fractions of the SOM are
represented. NEP can be computed as NPP minus total Ry,
fluxes, excluding the effects of small-scale fires and other
localized disturbances or vegetation regrowth patterns on
carbon fluxes [Schimel et al., 2001].

[14] Whereas previous versions of the NASA-CASA
model [Potter et al., 1993, 1999] used a normalized differ-
ence vegetation index (NDVI) to estimate FPAR, the current
model version instead relies upon canopy radiative transfer
algorithms [Knyazikhin et al., 1998], which are designed to
generate improved spatially varying FPAR products as
inputs to carbon flux calculations. These radiative transfer
algorithms, developed for the MODIS (Moderate resolution

Imaging Spectroradiometer) aboard the NASA Terra plat-
form, account for attenuation of direct and diffuse incident
radiation by solving a three-dimensional formulation of the
radiative transfer process in vegetation canopies. Monthly
gridded composite data from spatially varying channels 1
and 2 of the Advanced Very High Resolution Radiometer
(AVHRR) have been processed according to the MODIS
radiative transfer algorithms and aggregated over the global
land surface to 0.5° grid resolution, consistent with the
NASA-CASA model driver data for climate variables. The
MODIS FPAR algorithms largely account for satellite orbit
drift and sensor intercalibration corrections [Myneni et al.,
1998, 2002]. To minimize cloud contamination effects, a
maximum value composite algorithm was applied spatially
for 0.5° pixel values [Knyazikhin et al., 1999; Myneni et al.,
1998]. There is no complete atmospheric correction method
for water vapor and aerosols although the AVHRR 0.5° data
set uses the maximum value for the compositing period
which tends to minimize atmospheric contamination. Cloud
screening has been performed but contamination remains in
certain areas of the humid tropics and the high latitudes, and
offsets have been provided in lieu of a full intercalibration
between satellites.

3. Land Climate Controls on Ecosystem Carbon
Fluxes

[15] Global terrestrial NPP was estimated by our NASA-
CASA model to vary between 45 and 51 Pg C per year
[Potter et al., 1999, 2003]. The global predicted NEP flux
for atmospheric CO, has varied between an annual source
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Figure 2. Comparison of annual observed NPP to predicted values from the NASA-CASA model
(driven by 0.5° FPAR from the satellite AVHRR and climate means from New et al. [2000]). The data set
of more than 1900 observed NPP points was compiled for the Ecosystem Model-Data Intercomparison
(EMDI) activity by the Global Primary Productivity Data Initiative (GPPDI) working groups of the
International Geosphere Biosphere Program Data and Information System (IGBP-DIS). Analysis of
residuals has determined that scatter around the least squares regression line may be due as much to
uncertainties in scaling and inconsistencies in the ground-based measurements of NPP reported in
tropical and subtropical ecosystems as to the prediction uncertainties represented in the NASA-CASA

model.

of —0.9 Pg C per year to a sink of +2.1 Pg C per year, with a
trend of increasing from negative (net source flux to the
atmosphere) in the early 1980s to a consistently positive
(net sink flux from the atmosphere) by the mid to late
1990s. These results for NPP fluxes are all consistent with
those reported by Schimel et al. [2001] based largely on
predictions from numerous other global ecosystem models
and inventories. While absolute NEP values are subject to
considerable uncertainty, the anomalies, which are the basis
of this study, may be realistic. Our NASA-CASA model
results are also consistent with the findings of McGuire et
al. [2001] and Vukicevic et al. [2001] that globally, there can
be a net release of carbon to the atmosphere during El Nifio
years, and a net uptake during cooler non El Nifio years.
However, our results suggest that this climate control
pattern applies mainly to the tropical zones of the terrestrial
biosphere.

[16] Association rule analysis can offer further insights
into the types of dependencies that exist among variables
within a large data set [Goodman and Kruskal, 1954].
Nonrandom associations between two or more model var-
iables are reported here using the chi-square test [Stockburger,
1998]. Chi-square values greater than 3.84 (degrees of
freedom = 1) indicate a high probability (p < 0.05) of
nonrandom association between anomalously low (LO) or
anomalously high (HI) monthly events for TEMP or PREC
with either NPP or NEP. We used an anomalous event
threshold value of 1.5 standard deviations or greater from

the long-term (1982—1998) monthly mean value. For our
analysis, association patterns are reported below on the basis
of frequency of occurrence within major global vegetation
types [DeFries and Townshend, 1994].

[17] The main result from this analysis is that below-
average PREC and above-average TEMP can, respectively,
decrease predicted NPP and NEP in the tropics while
increasing NPP in notable areas of tundra and boreal
forests. Specifically, we find that one of the strongest
nonrandom associations in our NASA-CASA results is
that PREC-LO events cooccur with NPP-LO and with
NEP-LO events in certain areas of evergreen broadleaf
forests, deciduous broadleaf forests, croplands, and grass-
land savannas (Figure 3a). These events occur mainly in
drought-sensitive areas of tropical and subtropical zones,
and possibly in areas of major wild fires that are associ-
ated with FPAR-LO events. We also find that TEMP-HI
events cooccur with NPP-LO events for these same
vegetation types, which can be another indicator of
drought stress effects on plant carbon gains.

[18] Another nonrandom association rule indicates that
TEMP-HI events cooccur with NPP-HI and NEP-HI
events in subareas of tundra, grasslands, deciduous nee-
dleleaf forests, evergreen needleleaf forests, and mixed
(needleleaf-broadleaf) forest biomes (Figure 3b), even
with cooccurring PREC-LO events. These observations
lead to the hypothesis that regional climate warming has
had the greatest impact on high latitude (tundra and
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Figure 3. Locations of cooccurrence between anomalously low (LO) or anomalously high (HI) monthly
event observations for climate inputs and NASA-CASA predicted NEP from 1982 to 1998. An
anomalous event threshold value was defined as 1.5 standard deviations or greater from the long-term
(1982—-1998) monthly mean value. Each nonwhite pixel indicates a location where NEP anomalies
cooccurs in the time series with (a) PREC-LO or (b) TEMP-HI, and the color of that pixel indicates the
vegetation type at that location.
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Figure 4. Autocorrelation function of (a) SOI and (b) AO indices (1958—1995) at monthly lag periods.

boreal) sinks for atmospheric CO,, particularly over the
Eurasian continent.

[19] We find in addition that PREC-HI plus TEMP-HI
events cooccur with NPP-HI and NEP-HI events in subareas
of mixed forests, deciduous broadleaf forests, and evergreen
needleleaf forest biomes. This nonrandom association sug-
gests an important dual control over net carbon fluxes by
PREC and TEMP events in transition zones between cool
temperate and warmer subtropical forest ecosystems.

4. Time Series Teleconnections
4.1. Climate

[20] As a first step in analysis of global teleconnections,
we examined the underlying empirical relationships be-
tween land climate records, those used as input to the
NASA-CASA model, and the four selected climate indices.
We address the questions of where and how the land surface
temperature and precipitation time series used as model
input variables are correlated with the ENSO and AO
patterns. Our analysis here covers a long-term (1958—
1998) historical record to assess the impacts of ENSO and
AO on land climate, rather than concentrating on individual
ENSO events of the past 20 years. By considering several
decades of climate cycles, we can more accurately assess
the impacts of events such as El Niflo and La Nifia on the
terrestrial biosphere, and their statistical significance.

[21] Serial correlation (i.e., autocorrelation) needs to be
considered when testing significance of the association
between two time series. Geophysical time series are
frequently autocorrelated because of inertia or carryover
processes in the physical system. The effect of autocorrela-
tion on cross-correlations can be dealt with in various ways
[Pyper and Peterman, 1998]. First, the number of degrees
of freedom (df) can be reduced. This has the effect of

increasing the cut-off value at which a correlation is
considered statistically significant. A second way is to
attempt to remove the autocorrelation, thereby reducing
the cross-correlation in the event of autocorrelation [Katz,
1988]. This second method may be preferable in cases
where the value of the correlation is prime interest, and
secondarily whether the correlation is significant at some
level. However, methods to remove autocorrelation (e.g.,
prewhitening) can also remove the low-frequency correla-
tion that constitutes the main topic of interest in this study.
Therefore we have chosen the first way of reducing df to a
level that treats these cross-correlations as if the data
showed insignificant autocorrelation starting at six month
time intervals rather than at monthly intervals.

[22] Autocorrelation function (ACF) analysis is the cor-
relation of each measurement in a times series with a
measurement before or after it in the series. Autocorrelation
can be assessed in the form of Pearson’s product moment
correlation coefficient [Tong, 1990]. Pearson correlation test
with these climate index data sets indicates that ACF must
>0.3 to be statistically different from zero (two-tailed t test
[Stockburger, 1998]), and thereby indicate a significant
autocorrelation. We determined the ACF for climate indices
at all possible lag times. SOI anomalies have a low ACF
(<0.3) at lag times greater than about six months (Figure 4a;
using index data from 1958—1995). The same is true for the
NINO1 + 2 index anomalies. For the AO/NAO anomalies,
the ACF is <0.1 at lag times greater than three months
Figure 4b. Like SOI patterns in Figure 4a, the ACF is <0.3
at lag times greater than six months for our predicted NPP
anomalies. On the basis of these results, it is a conservative
determination [Trenberth and Caron, 2000] to accept df for
the climate index time series correlations with terrestrial
carbon fluxes to be df = 32 (34 “‘seasons” of six months
duration in a 17-year window, minus 2 for a two-tailed test
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Figure 5. Global correlations (» > 0.2) of SOI and AO index (1958—1998) Z score anomalies with
CRUO5 monthly (a, b) TEMP and (¢, d) PREC for the three-month period December—February (DJF).

of significance). For the purposes of demonstrating a
significant association with measured climate index values
at df = 32 (17-years), Pearson’s correlation coefficient (r) >
0.34 carries a relatively high confidence level of p < 0.05.
When dealing with long-term climate correlations and df >
75 (for roughly 40-years of global records), values of > 0.2
carry the same confidence level of p < 0.05.

[23] Like Mason and Goddard [2001], we report on
analysis of the long-term climate data from the Climate
Research Unit of the University of East Anglia, Norwich
[New et al., 2000] (hereinafter referred to as the CRUO0S5
data set). CRUOS is a global, monthly mean data set of
TEMP, PREC, humidity, and cloudiness at 0.5° by 0.5°
latitude/longitude resolution, available for the period 1901—
1995. Because the land climate record is most reliable after
the 1940s, we restricted our analysis to the period between
1958 and 1998.

[24] Significant correlations between the time series
anomalies of the SOI, AO, NINO1 + 2 and NINO4 climate
indices and 0.5° PREC or TEMP on land were identified.
The first step in this analysis was the conversion of all time
series to monthly Z score values, which can be used to
specify the relative statistical location of each monthly value

within the 40-year population distribution (e.g., all Januarys
have adjusted with respect to the long-term mean January
value). The numerical Z score indicates the distance from
the long-term monthly mean as the number of standard
deviations above or below the mean. The main difference
between the t-statistic and the Z score is that the t test uses a
sample standard deviation, whereas the Z score uses pop-
ulation standard deviation.

[25] Results show that CRUOS5 land TEMP records for
the period 1958—98 were most significantly correlated with
SOl in the tropical zones between 15°N and 30°S (Figure 5a),
whereas the most significant correlation areas of TEMP with
AO were located in Scandinavia, northwestern Europe,
eastern and southern boarders of the Mediterranean Sea,
and portions of northeastern Canada (Figure 5b). CRUO05
land TEMP records were most significantly correlated with
NINOI1 + 2 in many of the same areas as AO (results not
shown). CRUOS5 land TEMP records were most significantly
correlated with NINO4 in Pacific coastal zones of North
America and in many of the same areas of the tropical zone
as SOL

[26] Three-month seasonal subsets of the climate indices
were correlated to the corresponding three-month seasonal
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Table 1. Exclusive Area Coverage for Correlation Results
Between Climate Indices (1958—-1998) With CRUOS Monthly
TEMP, PREC For 3-Month Periods, and NASA-CASA Predicted
NEP (1982-1998)*

PREC
TEMP DJF MAM JIA SON NEP
SOI 1.7 12.9 4.1 2.8 11.6 132
AO 10.7 21.8 3.7 4.1 10.5 14.1
NINOI + 2 18.1 1.3 35 1.4 8.9 14.5
NINO4 6.5 14.9 7.7 8.9 9.5 15.7
TOTAL 36.9 50.8 19.0 17.3 40.4 57.6

?Area coverage is percent of the global land surface, excluding ice and
desert cover.

subsets PREC. On a global basis, land PREC correlations
with all four climate indices were generally most significant
during the northern hemisphere winter (DJF) and autumn
(SON) months, compared to the spring (MAM) and sum-
mer (JJA) months [Trenberth and Hurrell, 1994; Hurrell,
1995]. Results show that CRUOS land DJF PREC records
for the period 1958—98 were most significantly correlated
with SOI in the Pacific coastal zones of central Canada,
Mexico and the southwestern United States, the northeast-
ern Amazon, eastern Europe, and Australia (Figure 5¢). The
most significant DJF PREC correlations with AO were
located in Scandinavia, northern Eurasia, northern boarders
of the Mediterranean Sea, and portions of Canada, Alaska,
central South America, and Africa (Figure 5d). CRUOS land
PREC records were most significantly correlated with
NINO1 + 2 and NINO4 indices in areas of the southern
United States and in many of the same tropical zones as
SOl

[27] We computed the “exclusive” area for the climate
index correlations as follows. For each pixel where a
significant correlation is found with the CRUOS variables,
we select the index with the maximum correlation value and
sum to the fraction of the total land area covered by this
climate index. Exclusive area coverage results (Table 1) for
climate index correlations with 40-year CRUOS5 records
exclude ice and desert cover [DeFries and Townshend,
1994]. Highest global area coverage for combined climate
index correlations (at » > 0.2) was with DJF PREC (51%),
followed by SON PREC (40%), and land TEMP (37%). We
note that AO correlations contributed higher exclusive area
coverages than did SOI for global correlations with either
DJF PREC or land TEMP records.

[28] On a global basis, land FPAR correlations with the
four climate indices were generally most significant in areas
that correspond closely to those shown with high correla-
tions in Figures 4c and 4b for DJF PREC. These areas for
significant FPAR correlations cover large sections of west-
ern and central North America, Brazil, eastern Europe,
Siberia, southern Africa, and Australia.

4.2. Carbon Fluxes

[20] Turning to predicted carbon flux results, we used
matching monthly records for the period of 1982—1998 to
investigate associations between the time series anomalies
of the climate indices and predicted carbon fluxes on land
from the NASA-CASA model. Examples of the close
association between three climate indices and land NPP
fluxes at > 0.4 are shown in Figure 6. These locations were
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selected because of their close proximity to land areas
where climate index-NPP correlations of » > 0.5 are
aggregated. Both the SOI and NPP fluxes (for example, in
eastern Brazil) show low points in 1983, 1987, 1992, and
1998. The NINO1 + 2 index and NPP fluxes (for example,
in the southwestern United States) both show high points
during these same years, suggesting a reverse effect (com-
pared to SOI) of precipitation patterns between the two
distant land areas. The AO index and NPP fluxes (for
example, in southern Scandinavia) both show rapid
increases in 1986, 1989 and 1995, which can be attributed
to increasing precipitation and temperature on land during
these transition periods. We find that a seasonal phase shift
in climate index lead times of up to six months commonly
improved correlations with the NPP and NEP time series
anomalies.

[30] Global correlation maps (Figures 7a—7c) show the
areas where » > 0.34 for associations of the SOI, NINO1 + 2,
and AO indices with our predicted NEP fluxes for the period
1982—-98. Seasonality in all time series records was removed
before this analysis by computing a 12-month moving
average [Bousquet et al., 2000]. Phase shifts (in months)
are shown (Figures 7d—7f) for the most significant climate
index association shown in the correlation maps. The 2—
6 month lead between the climate indices and NEP results
principally from phase differences between the climate
indices and the model inputs (TEMP, PREC, and FPAR)
used to generate NEP. We note that NEP is correlated with
climate indexes based largely on TEMP, PREC and FPAR
controls over NPP rather than on prediction of heterotrophic
soil respiration.

[31] We find that for nearly 58% of the global nonbarren
(desert/ice coverage) of the land, anomalies in deseasonal-
ized NEP fluxes have significant teleconnections with
climate (Table 1), as represented by four indices (SOI,
AO, NINOI1 + 2, and NINO4) associations combined. The
desert and ice-covered areas excluded from our analysis
were defined according to the global land cover from
DeFries and Townshend [1994]. Each of the four climate
indices used to map significant correlations with NEP
contributed about 14% to the overall nonbarren coverage.
For deseasonalized NPP anomalies, 56% of the nonbarren
land surface has a significant teleconnection with the four
climate indices. In comparison to these NASA-CASA
model outputs, the FPAR input time series of deseasonal-
ized anomalies have significant teleconnections with the
four climate indices for 55% of the nonbarren land surface.
Because we cannot rule out completely that FPAR values in
areas like the humid tropics and the northern boreal forest
may be depressed by persistent cloud or smoke aerosol
contamination, these area totals for significant correlations
with climate indices could be conservative estimates.

[32] Because of the high level of temporal and spatial
autocorrelation in the 17-yr predicted NPP and NEP global
results, it is possible that spurious (random) correlations
with the four climate indices might be detected. Following
the general methods described by Wilks [1995], we gener-
ated 1000 random time series, performed global pixel
correlations with NPP and NEP, then computed the com-
bined land area with significant correlation for sets of four
random time series. We find that these sets of four random
time series will correlate as significantly in terms of global
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Figure 6. Time series association of 12-month running average SOIL, NINO1 + 2, and AO anomalies
with terrestrial NPP anomalies at » > 0.4 for selected areas of the (a) eastern Brazil, (b) southwestern
United States, and (c) southern Scandinavia. Time series were standardized to scale between —3 and +3
by subtracting the mean of the entire time series and dividing by the overall standard deviation.

NPP coverage (56%) almost as often as do the four selected
climate index time series. We next find, however, that the
combined global land coverage for NEP correlations with
the four selected climate indices (58%), as shown in

Figure 7, is significantly higher (p < 0.05) than any set of
four random number time series we can generate. Therefore
it is highly unlikely that the four selected climate index time
series correlations with global NEP is spurious.
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Figure 7. Global associations of SOI, NINO1 + 2, and AO anomalies with predicted terrestrial NEP
anomalies (1982—-1998). (a—c) Correlation coefficients are shown by the color bar for pixels correlated at
r > 0.34, based on the lags indicated in Figures 7d—7f; (d—f) Phase shifts (in months) for the most
significant associations shown in Figures 7a—7c. Twelve-month running mean anomalies were computed

to deseasonalize the time series comparisons.

[33] The influences of climatic teleconnections can be
observed in predicted annual carbon fluxes over some of the
most drought-stressed land areas of the globe. In particular,
the SOI and NINOI + 2 indices are consistent indicators of
interannual NEP fluxes in large sections of central North
and South America, western and central Africa, south Asia
and Australia. Teleconnections of AO are most strongly
predicted with annual NEP fluxes for large sections of
western Canada, Scandinavia, central Eurasia, the Mediter-

ranean, southern Africa, and central Brazil. We note, how-
ever, that NEP in certain interior land areas of the Northern
Hemisphere above 50°N latitude cannot be significantly
correlated with any of the four selected climate indices.
[34] The tropical inland areas of central and southern
Brazil that show significant correlations for FPAR, NPP, and
NEP with AO (Figures 7c) are noteworthy, particularly
because these patterns in the 17-year satellite record of
terrestrial FPAR can corroborate the findings of atmospheric
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simulation studies that have recently implied a strong
influence of southern Atlantic SST anomalies on the
NAO, with concurrent impacts on southern Amazon rainfall
patterns [Robertson et al., 2000]. Our results here are an
additional indicator of circulation and heating patterns
associated with the South American monsoon system
(SAMS), which may exert an important influence on the
boreal winter subtropical jet over eastern North America,
possibly through changes Amazon rainfall and regional
Hadley circulations [Nogués-Paegle et al., 1998].

[35] The relative impacts of PREC and TEMP time series
inputs (to the NASA-CASA carbon model) on correlations
between climate indices SOI and AO with our predicted
NEP fluxes can be examined further by comparison of
Figures 5 and 7. For example, we find that 15% of total
land area shown in Figure 7a as having significant correla-
tion of NEP with SOI also shows significant correlation of
DJF PREC with SOI (Figure 5c). Just over 34% of total land
area shown in Figure 7a as having significant correlation of
NEP with SOI also shows significant correlation of TEMP
with SOI (Figure 5a), while only 7% also shows significant
correlation of both PREC and TEMP with SOI. We find that
23% of the total land area shown in Figure 7c as having
significant correlation of NEP with AO also shows signifi-
cant correlation of DJF PREC with AO (Figure 5d), while
30% of total land area shown in Figure 7a shows significant
correlation of TEMP with AO (Figure 5b), and nearly 11%
also shows significant correlation of both PREC and TEMP
with AO. We can conclude therefore that at least 50% of the
global land areas shown in Figure 7 as having significant
correlation of predicted NEP with SOI or AO results from
similarly significant correlations of either PREC and TEMP
model inputs with SOI or AO. The remaining 50% of the
global land area shown in Figure 7 as having significant NEP
correlations must result from FPAR inputs to the NASA-
CASA carbon model, which can also correlate significantly
with either SOI or AO.

[36] Effects in land use boundaries are detectable in our
global results. When the nonbarren surface is separated into
global cultivated and uncultivated areas, the total area where
anomalies in annual NPP or NEP fluxes have significant
correlations (7 > 0.34) with the four climate indices is much
lower for cultivated areas at 7% exclusive global coverage
than for uncultivated areas at >50% exclusive global cov-
erage. Exclusive global coverages for CRUO5S TEMP and
PREC correlations (r > 0.34) with the four climate indices
are both less than 6% of the total cultivated land area. This
comparison implies that land climate and carbon fluxes in
cultivated areas worldwide are not as closely linked to large-
scale climate teleconnections as are carbon fluxes in uncul-
tivated ‘“‘natural” ecosystems, or that cultivation occurs
mainly in regions that are not strongly teleconnected to
ENSO or AO.

5. Concluding Remarks

[37] This first global analysis of climate teleconnections
with terrestrial carbon fluxes from satellite observations
suggests a number of important lines of study for carbon
cycle science. We are able to make an initial assessment of
the ecosystem areas that are most strongly influenced by
climate teleconnections to ocean-atmosphere processes,
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thereby laying the foundation for more predictive model
development at the global level. The results presented here
also begin to demonstrate the magnitude of temporal and
spatial variability in terrestrial exchanges of CO, with the
atmosphere that can be attributed mainly to large-scale
coupling with global climate processes. Our terrestrial
ecosystem model includes predictions for the amount of
NPP carbon stored in vegetation biomass and soils [Potter,
1999; Potter et al., 2001a], which makes is possible to link
localized controls on atmospheric CO, sinks on the land to
ocean-atmosphere dynamics anywhere on the globe. With
an extension of our predicted terrestrial NEP record from
the NASA-CASA model to more than 20 years, additional
events in SST/SLP variation can be included in an attempt
to establish even stronger climate-land teleconnections in
the carbon cycle. For future studies of the terrestrial carbon
cycle, major anomalies in ecosystem carbon fluxes to or
from the pool of CO, in the atmosphere might be predicted
based on more detailed association and statistical analyses
of these kind of teleconnections.
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